Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Xuanhua Chen, ${ }^{\text {a,b }}$ Rongwei Guo $^{\mathrm{a}, \mathrm{b} *}$ and Zhongyuan Zhou ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Central China Normal University, Wuhan, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Applied Biology and Chemical Technology, The Hong Kong
Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China

Correspondence e-mail:
98900496r@polyu.edu.hk

Key indicators
Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.064$
$w R$ factor $=0.198$
Data-to-parameter ratio $=19.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl (E)-3-acetamido-4-methyl-2-pentenoate

The molecule of the title compound, $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}$, is an E isomer and the crystal structure involves an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, forming one-dimensional chains along the a axis.

Comment

The title compound, (I), is one of the prochiral olefins widely used in the asymmetric hydrogenation reaction (Hackler \& Wickiser, 1985; Lubell et al., 1991) for producing β-amino acids and their derivatives. The enantiomeric excess of the hydrogenation product is significantly influenced by the structure of the substrate. The structure determination of (I) was conducted in order to obtain more stereochemical information about β-amino acids and their derivatives.

(I)

In the structure of (I) (Fig. 1), the bond lengths and angles are in the expected ranges (Table 1). As shown in the packing diagram (Fig. 2), the crystal structure contains intermolecular hydrogen bonds, and infinite molecular chains stretch along the a axis.

Experimental

The title compound was synthesized according to Zhu et al. (1999). A crystal suitable for X-ray analysis was grown slowly in a mixture of

The molecular structure of (I), showing ellipsoids at the 50% probability level (Siemens, 1995).

Received 18 November 2002
Accepted 21 November 2002
Online 30 November 2002
ethyl acetate and hexane at room temperature. ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone $-d_{6}$, Bruker): $\delta 1.13(d, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.09(s, 3 \mathrm{H}), 3.59(s$, 3 H), 4.34 (sep, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(s, 1 \mathrm{H}), 8.18(b r, 1 \mathrm{H})$.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}$
$M_{r}=185.22$
Orthorhombic, Pbca
$a=9.806$ (2) A
$b=12.435$ (3) \AA
$c=17.067$ (4) \AA
$V=2081.1(9) \AA^{3}$
$Z=8$
$D_{x}=1.182 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.976, T_{\text {max }}=0.991$
13157 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 2463 reflections
$\theta=1-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Needle, colorless
$0.28 \times 0.10 \times 0.10 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.198$
$S=1.02$
2384 reflections
123 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.08 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.024(5)
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

O1-C1	$1.209(4)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.368(4)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.333(4)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.410(4)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.437(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.449(4)$
$\mathrm{O} 3-\mathrm{C} 7$	$1.216(3)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.517(5)$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 9$	$118.0(3)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$121.0(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 3$	$128.2(3)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$128.4(3)$
C9-O2-C1-O1	$-1.6(5)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$163.4(3)$
$\mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$179.7(3)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$73.2(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$-179.7(3)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$178.7(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.28	$3.124(3)$	166

Symmetry code: (i) $x-\frac{1}{2}, \frac{3}{2}-y, 1-z$.

Figure 2
Packing diagram for (I). Hydrogen bonds are indicated by dashed lines.

H atoms were positioned geometrically and refined in the ridingmodel approximation, with $U_{\text {iso }}$ values equal to $U_{\text {eq }}$ of the atom to which they are bound.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995) and SHELXTL (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank The Hong Kong Polytechnic University ASD Fund for financial support of this study.

References

Hackler, R. E. \& Wickiser, D. I. (1985). Br. UK Patent GB 2141712.
Lubell, W. D., Kitamura, M. \& Noyori, R. (1991). Tetrahedron: Asymmetry, 2, 543-554.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SAINT (Version 5.0), SMART (Version 5.0) and SHELXTL$N T$ (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zhu, G. X., Chen, Z. G. \& Zhang, X. M. (1999). J. Org. Chem. 64, 6907-6910.

